Abstract
To enhance the power and energy densities of advanced lead–acid batteries (Ad-LAB), a novel core–shell structure of lead-activated carbon (Pb@AC) was prepared and used as a negative electrode active material. The AC could be formed as a shell around a core of Pb nanoparticles. The active core–shell structures were synthesized using a simple chemical process to overcome the limitations in the negative Pb electrode, specifically the large crystallization of lead sulfate (PbSO4) that leads to a short cycle life. The key role of the carbon material in the negative electrode is to enhance the electrochemical performances and decrease the formation of PbSO4. The X-ray diffraction study reveals that the formation of lead oxide was prevented by the AC during the synthetic process. The novel core–shell structure of Pb@AC was confirmed through transmission electron microscopy. In order to obtain high-performance Ad-LAB, a high surface area of the AC is necessary to provide a super capacitive effect in the negative electrode. The unit cell performance of the as-prepared active materials exhibits significant increased discharge capacity at 1C rate. The unit cell with the Pb@AC negative electrode has a capacity per unit volume of 0.0165 Ah/cc. Hence, the low cost of AC and the simple synthetic core–shell structure of Pb@AC make this material a promising negative electrode active material for Ad-LAB applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.