Abstract

Waste pickling liquors (WPLs) containing high concentrations of iron and acid are hazardous waste products from the steel pickling processes. A novel combined coprecipitation–oxidation method for iron recovery by Fe3O4 nanoparticle production from the WPLs was developed in this study. An oxidation–reduction potential monitoring method was developed for real-time control of the Fe2+/Fe3+ molar ratio. The key coprecipitation–oxidation parameters were determined using the orthogonal experimental design method. The use of promoters greatly improved the Fe3O4 nanoparticle crystallinity, size, magnetization, and dispersion. X-ray diffraction patterns showed that the produced Fe3O4 nanoparticles were single phase. The Fe3O4 nanoparticles were approximately spherical and slightly agglomerated. Vibrating sample magnetometry showed that the Fe3O4 nanoparticles produced from the WPLs had good magnetic properties, with a saturation magnetization of 80.206 emu·g–1 and a remanence of 10.500 emu·g–1. The results show that this novel coprecipitation–oxidation method has great potential for recycling iron in WPLs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.