Abstract

On the basis of the first-principles evolutionary crystal structure prediction of stable compounds in the Cu-F system, we predict two experimentally unknown stable phases - Cu2F5 and CuF3. Cu2F5 comprises two interacting magnetic subsystems with Cu atoms in the oxidation states +2 and +3. CuF3 contains magnetic Cu3+ ions forming a lattice by antiferromagnetic coupling. We showed that some or all of Cu3+ ions can be reduced to Cu2+ by electron doping, as in the well-known KCuF3. Significant similarities between the electronic structures calculated in the framework of DFT+U suggest that doped CuF3 and Cu2F5 may exhibit high-Tc superconductivity with the same mechanism as in cuprates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.