Abstract

Electrophilic trisubstituted ethylene monomers, akyl and alkoxy ring‐trisubstituted methyl 2‐cyano‐3‐phenyl‐2‐propenoates, RC6H2CH˭C(CN)CO2CH3, (where R is 2,3‐dimethyl‐4‐methoxy, 2,5‐dimethyl‐4‐methoxy‐, 2,3,4‐trimethoxy‐, 2,4,5‐trimethoxy, 2,4,6‐trimethoxy, and 2,4‐dimethoxy‐3‐methyl), were synthesized by the piperidine catalyzed Knoevenagel condensation of ring‐substituted benzaldehydes and methyl cyanoacetate, and characterized by CHN elemental analysis, IR, 1H‐ and 13C‐NMR. Novel copolymers of the ethylenes and styrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator (AIBN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C NMR, GPC, DSC, and TGA. High Tg of the copolymers in comparison with that of polystyrene indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. The gravimetric analysis indicated that the copolymers decompose in the 283–306°C range.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.