Abstract

A theoretical study of the dynamic closed-loop behaviour of a reactor/feed-effluent heat exchanger (FEHE)/furnace system for the catalytic combustion of volatile organic compounds (VOCs) is presented. A 1D pseudohomogeneous plug-flow model is proposed to simulate the non-steady-state operation of the monolith reactor and the FEHE, while the furnace behaviour is described by means of a heterogeneous model of lumped parameters. Positive energy feedback is a source of instability that leads to strong thermal oscillations (limit cycles) and may cause damage to the equipment and sintering of the catalyst. The design of a robust and flexible control system and an efficient control strategy are, therefore, required to ensure safe and stable operation. The response of the system under three different control strategies to the most frequent disturbance variables—the feed flowrate (FV0) and feed concentration of VOCs (C0Et)—was evaluated. One of the control strategies consisted of a single-loop feedback system with servomechanism changes in the reactor inlet temperature (T0) that manipulated the bypass valve and, sequentially, the natural gas flowrate in the furnace (FNG). This approach made it possible to meet the control objective (reducing VOCs) without losing controllability and while minimizing the use of external fuel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.