Abstract
Abstract: For ever increasing power demand and depletion of conventional energy resources, Renewable Energy Systems (RES) became an alternative source of electricity to reduce the load stress on the Power Grid. Although several control & design modifications are presented in past literature to improve reliability & performance of through Distribution Generation (DG) technologies, they always fall short in some aspects of voltage stability and Fault Ride Through (FRT) capabilities. The main aim of the project is Protecting Critical load from Grid side altercations which occur due to harmonics generated by DG’s and Short circuit faults near to load center. This project proposes the application of a Dynamic Voltage Restorer (DVR) to enhance the power quality and improve the Fault Ride Through (FRT) capability of a three-phase medium-voltage network connected to a hybrid distribution generation (DG) system. In this hybrid farm, the Photo Voltaic (PV) plant via single-stage energy conversion (DC-AC inverter) & DFIG (Doubly-Fed Induction Generator) based Wind power plant are connected to the same Point of Common Coupling (PCC). For MPPT of wind power plant, we use Pitch Angle Control (PAC) technique. This topology allows Perturb and observe (P&O) based MPPT algorithm for PV plant through connection of the DG (Distribution generation) system to the public grid through a step-up transformer. In addition, the DVR based on Artificial Neural Network (ANN) controller is connected to the same PCC. Different fault condition scenarios are tested for improving the efficiency and the quality of the power supply and compliance with the requirements of the sensitive Load. The efficiency of this control technique is that it enhances restoration and harmonics suppression capabilities of DVR which are far superior than that of PI controller used in existing model. Keywords: RES, DG, LVRT, FRT, PV, DFIG, PCC, MPPT, P&O, DVR, PI, ANN, THD, Voltage stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Research in Applied Science and Engineering Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.