Abstract
We study for the first time the possibility of probing long-range fifth forces utilizing asteroid astrometric data, via the fifth force-induced orbital precession. We examine nine Near-Earth Object (NEO) asteroids whose orbital trajectories are accurately determined via optical and radar astrometry. Focusing on a Yukawa-type potential mediated by a new gauge field (dark photon) or a baryon-coupled scalar, we estimate the sensitivity reach for the fifth force coupling strength and mediator mass in the mass range m ≃ (10-21-10-15) eV, near the “fuzzy” dark matter region. Our estimated sensitivity is comparable to leading limits from equivalence principle tests, potentially exceeding these in a specific mass range. The fifth force-induced precession increases with the orbital semi-major axis in the small m limit, motivating the study of objects further away from the Sun. We also demonstrate that precession tests are particularly strong in probing long-range forces which approximately conserve the equivalence principle. We discuss future prospects for extending our study to more than a million asteroids, including NEOs, main-belt asteroids, Hildas, and Jupiter Trojans, as well as trans-Neptunian objects and exoplanets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.