Abstract

Connectivity studies targeting the thalamus have revealed patterns of atrophy and deafferentiation in temporal lobe epilepsy (TLE). The thalamus can be parcellated using probabilistic tractography to demonstrate regions of cortical connectivity; however, sensitivity to smaller or less connected regions is low. To investigate thalamic structural connectivity in a wider range of cortical and limbic structures in TLE patients using a novel connectivity map normalization procedure. Retrospective. Patients (N = 23) with medication-resistant TLE and 34 healthy age-matched controls. For T1 and diffusion weighting a spoiled gradient sequence was used (41 gradient directions [b = 1000]). For T2 mapping balanced steady-state free precession was used. Images were acquired at 3T. Probabilistic tractography and a novel normalization procedure allowed comparison of groups with respect to thalamic connected volume, quantitative MRI, and diffusion tensor imaging (DTI) metrics. Independent samples t-test, Cohen's d, and Mann-Whitney tests. Following normalization, significant differences in thalamic connected volumes were found in left TLE vs. controls bilaterally within the posterior parahippocampal gyrus (L: P = 0.007, confidence interval [CI]: [173.306,1044.41], effect size [ES] = 1.072; R: P = 0.017, CI: [98.677,947.653], ES = 0.945), and contralaterally in the anterior temporal neocortex (P = 0.01, CI: (-2348.09, -333.719), ES = -1.021). This procedure revealed differences in thalamic connected volumes, where previously published procedures could not, and provided a basis for exploratory analysis of quantitative MRI and DTI metrics. The novel connectivity map normalization scheme proposed here successfully allowed comparison between a wider range of cortical and limbic structures. Multiple volumetric and quantitative MRI and DTI-related differences between TLE patients and controls were revealed following normalization. With validation from a larger cohort, thalamo-temporal connection aberrancies may become useful biomarkers of disease states and probabilistic tractography as a procedure for identification of thalamic targets in modulatory therapies for TLE. 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;48:1529-1539.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.