Abstract
A variety of novel opaque, white polymers ranging from rubbery materials to tough and rigid plastics have been prepared by the thermal polymerization at 85-160 degrees C of varying amounts of 87% conjugated linseed oil, styrene, and divinylbenzene. Gelation of the reactants typically occurs at temperatures higher than 120 degrees C, and fully cured thermosets are obtained after postcuring at 160 degrees C. The fully cured thermosets have been determined by Soxhlet extraction to contain approximately 35-85% cross-linked materials. The microcomposition of these polymers, as determined by 1H NMR spectroscopy, indicates that the cross-linked materials are composed of both soft oily and hard aromatic phases. After solvent extraction, the insoluble materials exhibit nanopores well distributed throughout the polymer matrixes. Dynamic mechanical analysis of these polymers indicates that they are phase separated with a soft rubbery phase having a sharp glass transition temperature of -50 degrees C and a hard brittle plastic phase with a broadened glass transition temperature of 70-120 degrees C. These polymers possess cross-link densities of 0.15-2.41 x 10(4) mol/m3, compressive Young's moduli of 12-438 MPa, and compressive strengths of 2-27 MPa. These materials are thermally stable below 350 degrees C and exhibit a major thermal degradation of 72-90% at 493-500 degrees C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.