Abstract
A new generalization of the configurational-bias Monte Carlo method is presented which avoids the problems inherent in a Boltzmann rejection scheme for sequentially generating bond bending and torsional angles. The TraPPE-UA (transferable potentials for phase equilibria united-atom) force field is extended to include Lennard-Jones interaction parameters for methine and quaternary carbon groups by fitting to critical temperatures and saturated liquid densities of branched alkanes. Configurational-bias Monte Carlo simulations in the Gibbs ensemble were carried out to determine the vapor−liquid coexistence curves (VLCC) for six alkane isomers with four to eight carbons. Results are presented for two united-atom alkane force fields: PRF [Poncela, et al. Mol. Phys. 1997, 91, 189] and TraPPE-UA. Standard-state specific densities for the TraPPE-UA model were studied by simulations in the isobaric−isothermal ensemble. It is found that a single set of methyl, methylene, methine, and quaternary carbon parameters g...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.