Abstract

Most small molecule drugs interact with unintended, often unknown, biological targets and these off-target interactions may lead to both preclinical and clinical toxic events. Undesired off-target interactions are often not detected using current drug discovery assays, such as experimental polypharmacological screens. Thus, improvement in the early identification of off-target interactions represents an opportunity to reduce safety-related attrition rates during preclinical and clinical development. In order to better identify potential off-target interactions that could be linked to predictable safety issues, a novel computational approach to predict safety-relevant interactions currently not covered was designed and evaluated. These analyses, termed Off-Target Safety Assessment (OTSA), cover more than 7,000 targets (~35% of the proteome) and > 2,46,704 preclinical and clinical alerts (as of January 20, 2019). The approach described herein exploits a highly curated training set of >1 million compounds (tracking >20 million compound-structure activity relationship/SAR data points) with known in vitro activities derived from patents, journals, and publicly available databases. This computational process was used to predict both the primary and secondary pharmacological activities for a selection of 857 diverse small molecule drugs for which extensive secondary pharmacology data are readily available (456 discontinued and 401 FDA approved). The OTSA process predicted a total of 7,990 interactions for these 857 molecules. Of these, 3,923 and 4,067 possible high-scoring interactions were predicted for the discontinued and approved drugs, respectively, translating to an average of 9.3 interactions per drug. The OTSA process correctly identified the known pharmacological targets for >70% of these drugs, but also predicted a significant number of off-targets that may provide additional insight into observed in vivo effects. About 51.5% (2,025) and 22% (900) of these predicted high-scoring interactions have not previously been reported for the discontinued and approved drugs, respectively, and these may have a potential for repurposing efforts. Moreover, for both drug categories, higher promiscuity was observed for compounds with a MW range of 300 to 500, TPSA of ~200, and clogP ≥7. This computation also revealed significantly lower promiscuity (i.e., number of confirmed off-targets) for compounds with MW > 700 and MW<200 for both categories. In addition, 15 internal small molecules with known off-target interactions were evaluated. For these compounds, the OTSA framework not only captured about 56.8% of in vitro confirmed off-target interactions, but also identified the right pharmacological targets for 14 compounds as one of the top scoring targets. In conclusion, the OTSA process demonstrates good predictive performance characteristics and represents an additional tool with utility during the lead optimization stage of the drug discovery process. Additionally, the computed physiochemical properties such as clogP (i.e., lipophilicity), molecular weight, pKa and logS (i.e., solubility) were found to be statistically different between the approved and discontinued drugs, but the internal compounds were close to the approved drugs space in most part.

Highlights

  • The drug discovery process for small molecules typically starts with large screening campaigns using institutional or commercial compound collections in order to identify chemical matter for lead optimization efforts (Drews, 2000; Bleicher et al, 2003)

  • ANOVA statistical comparisons on each of these properties for the approved and discontinued drug categories are summarized in Table 2, while the distributions of each physicochemical property are visualized by violin plots (Supplementary Data Sheets S3A–J)

  • Computational prediction of toxicity has been a desirable objective of toxicologists for decades, but it is only in the last few years that significant advances have been made through the integration of information and data from multiple scientific disciplines, including chemistry, biology, pharmacology, genomics, and basic toxicology (Bai and Abernethy, 2013; Luechtefeld et al, 2018)

Read more

Summary

Introduction

The drug discovery process for small molecules typically starts with large screening campaigns using institutional or commercial compound collections in order to identify chemical matter for lead optimization efforts (Drews, 2000; Bleicher et al, 2003). The past few years have witnessed significant advances in drug discovery technologies for the identification of novel lead compounds against a wide range of therapeutic targets including chemical matter to disrupt protein-protein interactions, which is notoriously difficult to design (Dang et al, 2017; Lai and Crews, 2017; Neri and Lerner, 2018) Among these advances, two complementary computational approaches have been developed including (1) a protein structure-based (target-centric) approach, which utilizes the knowledge of the three-dimensional structure of the protein as well as its ligand binding pocket features (Andricopulo et al, 2008; Lionta et al, 2014; Sarkar and Goswami, 2018); and (2) a ligand-based (ligand-centric) approach, which relies exclusively on the variation of biological response with diverse chemical structures, and comprises Pharmacophore and Quantitative StructureActivity Relationship (QSAR) approaches (Brown, 1998; Basith et al, 2018). This survey indicated that the top reason for drug attrition was nonclinical toxicity due to off-target interactions (Ralston, 2017)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call