Abstract
Human T-cell leukemia virus 1 (HTLV-1) associated lymphoma is a devastating malignancy triggered by HTLV-1 infections. We employeda comprehensive drug design and computational strategy in this work to explore the inhibitory activitiesof Astilbin derivatives against HTLV-1-associated lymphoma. We evaluated the stability, binding affinities, and various computational analysis of Astilbin derivatives against target proteins, such as HTLV-1 main protease and HTLV-1 capsid protein. The root mean square deviation (RMSD), root mean square fluctuation, radius of gyration, hydrogen bond analysis, principal component analysis (PCA) and dynamic cross-correlation matrix (DCCM) were applied to characterize these protein–ligand interactions further. Ligand-03 and ligand-04 exhibited notable binding affinity to HTLV-1 capsid protein, while ligand-05 displayed high binding affinity to HTLV-1 protease. MD simulation analysis revealed that ligand-03, bound to HTLV-1 capsid protein, demonstrated enhanced stability with lower RMSD values and fewer conformational changes, suggesting a promising binding orientation. Ligand-04, despite stable binding, exhibited increased structural deviations, making it less suitable. Ligand-05 demonstrated stable binding to HTLV-1 protease throughout the simulation period at 100 nanoseconds. Hydrogen bond analysis indicated that ligand-05 formed persistent hydrogen bonds with significantresidues, contributing to its stability. PCA highlighted ligand-03's more remarkable conformational changes, while DCCM showed ligand-05's distinct dynamics, indicating its different behavior in the complex. Furthermore, binding free energy calculations supported the favorable interactions of ligand-03 and ligand-04 with HTLV-1 capsid protein, while ligand-05 showed weaker interactions with HTLV-1 protease. Molecular electrostatic potential and frontier molecular orbital analyses provided insights into these compounds’ charge distribution and stability. In conclusion, this research found Astilbin derivatives as potential inhibitors of HTLV-1-associated lymphoma. Future attempts at drug development will benefit from the steady interaction landscape provided by Ligand-03, Ligand-04 and Ligand-05, which showed the most attractive binding profile with the target protein. These results open up new opportunities for innovative drug development, and more experimental testing should be done between Astilbin derivatives and HTLV-1-associated lymphoma. Communicated by Ramaswamy H. Sarma
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.