Abstract

A dynamic bacterial cytoskeleton consisting of FtsZ and other proteins is a potential target for the development of antibacterial drugs. GTPase activity of FtsZ protein leads to self-assembly of the protein. The resultant circumferential dynamic Z-ring at the centre of the cell recruits other proteins during progression and completion of bacterial cell division. There are natural compounds inhibiting one or more of these steps. Such inhibition ultimately culminates in the arrest of cell division. In this issue of the Biochemical Journal, a paper by Beuria et al. highlights the importance of the dynamics of the Z-ring for cell division. The ligand-induced enhanced degree of stabilization of FtsZ protofilaments, leading to the absence of the subsequent dissociation step, would hamper the normal functioning of the Z-ring, leading to an inhibition of cell proliferation. A novel antibacterial agent, OTBA (3-{5-[4-oxo-2-thioxo-3-(3-trifluoromethylphenyl)-thiazolidin-5-ylidenemethyl]-furan-2-yl}-benzoic acid) works via this hitherto unreported pathway. It stabilizes the FtsZ polymers, suppressing the dynamics which, in turn, inhibits cell division.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.