Abstract

Premature ovarian insufficiency (POI) is a common reproductive aging disorder due to a dramatic decline of ovarian function before 40 years of age. Accumulating evidence reveals that genetic defects, particularly those related to DNA damage response, are a crucial contributing factor to POI. We have demonstrated that the functional Fanconi anemia (FA) pathway maintains the rapid proliferation of primordial germ cells to establish a sufficient reproductive reserve by counteracting replication stress, but the clinical implications of this function in human ovarian function remain to be established. Here, we screened the FANCI gene, which encodes a key component for FA pathway activation, in our whole-exome sequencing database of 1030 patients with idiopathic POI, and identified two pairs of novel compound heterozygous variants, c.[97C > T];[1865C > T] and c.[158-2A > G];[c.959A > G], in two POI patients, respectively. The missense variants did not alter FANCI protein expression and nuclear localization, apart from the variant c.158-2A > G causing abnormal splicing and leading to a truncated mutant p.(S54Pfs*5). Furthermore, the four variants all diminished FANCD2 ubiquitination levels and increased DNA damage under replication stress, suggesting that the FANCI variants impaired FA pathway activation and replication stress response. This study first links replication stress response defects with the pathogenesis of human POI, providing a new insight into the essential roles of the FA genes in ovarian function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call