Abstract
Pseudovitamin D deficiency is the consequence of a genetic defect in the CYP27B1 gene resulting in diminished or absent conversion of 25-hydroxyvitamin D3 (25-(OH)D3) into 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) and leads to growth retardation and rickets, usually in the first 2 years of life. DNA obtained from human leucocytes from a patient suspected of pseudovitamin D deficiency and her healthy parents was sequenced for a genetic defect in the CYP27B1 gene. In silico analyses on the mutations were performed using online available software. The 1α-hydroxylase activity of the patient, her parents, and a sample derived from a mixed buffy coat of healthy blood donors was measured by culturing peripheral blood mononuclear cells with 25-(OH)D3 and measuring 1,25-(OH)2D3 production. DNA sequencing of the patient suspected of pseudovitamin D deficiency revealed compound heterozygosity in the CYP27B1 gene for a (c413G>T) mutation in exon 3 (R138L) and a (c1232G>A) mutation in exon 8 (C411Y). In silico analyses confirmed that mutations at these positions are probably damaging for the protein since the amino acids are situated in a highly conserved region. In vitro analyses showed a nearly absent 1α-hydroxylase activity in the patient compared to the healthy blood donors. Her healthy parents each of whom carried one of the mutations also had compromised conversion of 25-(OH)D3 into 1,25-(OH)2D3 in peripheral blood mononuclear cells, being only marginally higher than in the patient. We discovered novel compound heterozygous mutations in the CYP27B1 gene in a young girl presenting with pseudovitamin D-deficient rickets, leading to severely decreased 1,25-(OH)2D3 production. Furthermore, both heterozygous parents showed a diminished 1α-hydroxylase activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.