Abstract
The successful clinical management of lung cancer is limited by frequent loss-of-function mutations in p53 which cooperates with chronic oxidant-stress induced adaptations in mercapturic acid pathway (MAP) which in turn regulates critical intracellular signaling cascades that determine therapeutic refractoriness. Hence, we investigated the anti-cancer effects and mechanisms of action of a novel compound called 1,3-bis(3,5-dichlorophenyl) urea (COH-SR4) in lung cancer. Treatment with COH-SR4 effectively inhibited the survival and clonogenic potential along with inducing apoptosis in lung cancer cells. COH-SR4 treatment caused the inhibition of GST activity and G0/G1 cell cycle arrest and inhibited the expression of cell cycle regulatory proteins CDK2, CDK4, cyclin A, cyclin B1, cyclin E1, and p27. The COH-SR4 activated AMPK pathway and knock-down of AMPK partially reversed the cytotoxic effects of COH-SR4 in lung cancer. COH-SR4 treatment lead to regression of established xenografts of H358 lung cancer cells without any overt toxicity. The histopathology of resected tumor sections revealed an increase in pAMPK, a decrease in the nuclear proliferative marker Ki67 and angiogenesis marker CD31. Western-blot analyses of resected tumor lysates revealed a decrease in pAkt and anti-apoptotic protein Bcl2 along with an increase in pAMPK, pro-apoptotic protein Bax and cleaved PARP levels. Importantly, COH-SR4 lead to decrease in the mesenchymal marker vimentin and increase in the normal epithelial marker E-cadherin. The results from our in-vitro and in-vivo studies reveal that COH-SR4 represents a novel candidate with strong mechanistic relevance to target aggressive and drug-resistant lung tumors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.