Abstract

A new approach to the synthesis of a low-cost proton-exchange composite membrane (C-PEM) based on PVDF and silica with surface-anchored sulfonic acid (SASA) groups, is presented for the first time. SASA membranes of different compositions have been prepared and characterized with the use of SEM, DSC, TGA, BET and electrochemical techniques. The room-temperature conductivity of SASA-based C-PEMs, is in the range of 2.0–50 mS cm −1. The equivalent weight of two SASA powders, SASA3(A) and SASA4(A) are 1600 and 2500 g equiv. −1 respectively. The typical pore size as measured by BET is about 4 nm. The membrane is thermally stable up to 250 °C. Direct methanol fuel cells (DMFCs) have been assembled with some of the membranes. Preliminary tests show that the cell resistance with a non-optimized membrane is in the range of 3 Ω cm −2, therefore the maximum cell power density achieved so far does not exceed 32 mW cm −2 at 70 °C. The crossover-current density for a 100 μm-thick membrane DMFC measured in 1 M methanol at 80 °C is 110 mA cm −2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.