Abstract

Graphene composite materials have attracted significant attention for green energy storage systems due to their excellent electrochemical properties. We report a low-cost and environmentally friendly approach for synthesis of 3D multilayer graphene nanostructures (3DMGS) via catalytic graphitization and chemical oxidation-thermal reduction using biomass-based activated carbon (AC) as a precursor. The combination of microwave catalytic graphitization and chemical oxidation results in an active material with a unique physical and chemical structure. 3DMGS possesses a high specific surface area (503 m2 g−1) and an interconnected hierarchical porous structure with many defects and edges, which provide sufficient lithium-ion diffusion sites and facilitate fast ion transportation. When used as anode material for Li-ion batteries, 3DMGS exhibit outstanding rate capability and cycling stability (260 mAhg−1 at 5000 mAg−1 after 1100 cycles with charge retention of 114.47%.) and ultrahigh specific capacity (1513 mAhg−1 at 100 mAg−1).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.