Abstract

The coronavirus has caused the deaths of millions of people and has endangered the entire healthcare system. In order to count positive cases and stop the disease from spreading, Rapid clinical results may prevent the COVID-19 from spreading and help medical professionals treat patients while working under challenging circumstances.. Normal disease diagnosis using a laboratory test requires equipment and takes some time with the use of X-ray and chest CT Scan images, artificial intelligence techniques are extensively used to categorize the COVID-19. In this study we present an automatic detection approach for COVID-19 infection based on Chest CT and X-ray images using a Multilayer Perceptron (MLP) Neurons Network and a Convolutional Neural Network (CNN). The two models are evaluated in two classes, COVID-19 and normal images, for detection by Chest X-ray images we obtained 95,7% accuracy using MLP model and 90% accuracy using CNN model. For detection by Chest CT image we obtained, 80,60 % accuracy using the MLP model and 88,49 % accuracy using the CNN. The experimental results indicate that the proposed approach can achieve high accuracy in detecting COVID-19 from X-ray images, demonstrating the potential of using machine learning techniques in medical diagnosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.