Abstract

Background and aimsFamilial hypercholesterolemia (FH) is a predominantly autosomal dominant hereditary disorder with significant potential for expansion of coronary artery disease. MethodsTo identify candidate variant/s in FH phenotype implicated genes, next-generation sequencing was performed using a targeted customized gene panel. ResultsWe recognized a 45-year-old Saudi female FH patient with double variants in the LDLR [c.1255 T > G, p.(Y419D)] and LDLRAP1 genes [c.604_605delTCinsA, p.(S202Tfs*2)]. The proband was found to be homozygous for the LDLR variant and heterozygous for the LDLRAP1 variant.Three of the proband's children were found to be double heterozygous for the LDLR/LDLRAP1 gene variant. While her other three children were heterozygous for the same single LDLR variant. Both variants were not previously reported. The variants segregation pattern correlated with the clinical picture and with the patient's lipid profile. FH severity was greater in the proband while her children did not show any clinical manifestations. The missense variant p.(Y419D) was found to be deleterious and clinically significant based on prediction identified by PolyPhen-2 and Proven. Molecular dynamics simulation was used to further analyze the effect of the variant p.(Y419D) on the structure and function of the LDLR protein. The secondary structure was investigated, as well as the solvent accessibility and stabilizing residues. The frameshift variant of the LDLRAP1 gene results in a truncated peptide that could affect the cellular internalization of LDLR/LDL complex. ConclusionsThe finding of the combined variants in LDLR/LDLRAP1 genes triggering a severe FH phenotype is essential to elaborate the spectrum of variants causing FH and to understand the genotype-phenotype correlation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.