Abstract
Color vision assessment is essential in clinical practice, yet different tests exhibit distinct strengths and limitations. Here we apply a psychophysical paradigm, Angular Indication Measurement (AIM) for color detection and discrimination. AIM is designed to address some of the shortcomings of existing tests, such as prolonged testing time, limited accuracy and sensitivity, and the necessity for clinician oversight. AIM presents adaptively generated charts, each a N×M (here 4×4) grid of stimuli, and participants are instructed to indicate either the orientation of the gap in a cone-isolating Landolt C optotype or the orientation of the edge between two colors in an equiluminant color space. The contrasts or color differences of the stimuli are adaptively selected for each chart based on performance of prior AIM charts. In a group of 23 color-normal and 15 people with color vision deficiency (CVD), we validate AIM color against Hardy-Rand-Rittler (HRR), Farnsworth-Munsell 100 hue test (FM100), and anomaloscope color matching diagnosis and use machine learning techniques to classify the type and severity of CVD. The results show that AIM has classification accuracies comparable to that of the anomaloscope, and while HRR and FM100 are less accurate than AIM and an anomaloscope, HRR is very rapid. We conclude that AIM is a computer-based, self-administered, response-adaptive and rapid tool with high test-retest repeatability that has the potential to be suitable for both clinical and research applications.
Submitted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.