Abstract

Nanothermites (metal oxide/metal) are tremendously exothermic and run with self sustaining oxygen content. Manganese oxide is one of the most effective oxidizers for nanothermite applications. This paper reports on the sustainable fabrication of different nanoscopic forms of colloidal manganese oxides including: MnO2 nanoparticles of 20 nm average particle size and Mn2O3 nanorods of 50 nm diameter and 1 µm length. TEM micrographs demonstrated mono-dispersed particles and rods. XRD diffractograms revealed highly crystalline materials. MnO2 nanoparticles (oxygen content 37 wt%) can offer high oxidizing ability compared with Mn2O3 nanorods (oxygen content 30 wt%). The integration of colloidal particles into energetic matrix can offer enhanced dispersion characteristics; consequently stoichiometric binary mixture of MnO2 and Al nanoparticles were re-dispersed in organic solvent. The integration of developed colloidal nanothermite particles into tri-nitro toluene offered enhanced shock wave strength by 35% using ballistic mortar test. Thanks to nanotechnology which offered sustainable manufacture and subsequent integration of one of the most effective nanothermite particles into highly energetic system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call