Abstract
Various kinds of remote sensing image classification algorithms have been developed to adapt to the rapid growth of remote sensing data. Conventional methods typically have restrictions in either classification accuracy or computational efficiency. Aiming to overcome the difficulties, a new solution for remote sensing image classification is presented in this study. A discretization algorithm based on information entropy is applied to extract features from the data set and a vector space model (VSM) method is employed as the feature representation algorithm. Because of the simple structure of the feature space, the training rate is accelerated. The performance of the proposed method is compared with two other algorithms: back propagation neural networks (BPNN) method and ant colony optimization (ACO) method. Experimental results confirm that the proposed method is superior to the other algorithms in terms of classification accuracy and computational efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.