Abstract

One of the characteristics of Alzheimer's disease (AD) that hinders the discovery of effective disease-modifying therapies is the multifactorial nature of its etiopathology. To circumvent this drawback, the use of multi-target-directed ligands (MTDLs) has recently been proposed as a means of simultaneously hitting several targets involved in the development of the AD syndrome. In this paper, a new class of MTDLs based on a polyamine-quinone skeleton, whose lead (memoquin, 2) showed promising properties in preclinical investigations (Cavalli et al. Angew. Chem., Int. Ed. 2007, 46, 3689-3692), is described. 3-29 were tested in vitro against a number of isolated AD-related targets, namely, AChE and BChE, and Abeta aggregation (both AChE-mediated and self-induced). Furthermore, the ability of the compounds to counteract the oxidative stress in a human neuronal-like cellular system (SH-SY5Y cells) was assayed, in both the presence and absence of NQO1, an enzyme able to generate and maintain the reduced form of quinone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.