Abstract

The coupling of steam reforming and oxidative reforming of methane for the efficient production of hydrogen is investigated over Ni/Al 2O 3 catalyst in a novel circulating fast fluidized-bed membrane reformer ( CFFBMR) using a rigorous mathematical model. The removal of product hydrogen using palladium hydrogen membranes “breaks” the thermodynamic equilibrium barrier exists among the reversible reactions. Oxygen can be introduced into the adiabatic CFFBMR for oxidative reforming by direct oxygen (or air) feed and through dense perovskite oxygen membranes. The simulations show that high productivity of hydrogen can be obtained in the CFFBMR. The combination of these two different processes does not only enhance the hydrogen productivity but also save the energy due to the exothermicity of the oxidative reforming. Based on the preliminary investigations, four parameters (number of hydrogen membranes, number of oxygen membranes, direct oxygen feed rate and steam-to-carbon feed ratio) are carefully chosen as main variables for the process optimization. The optimized result shows that the hydrogen productivity (moles of hydrogen produced per hour per m 3 of reactor) in the novel CFFBMR is about 8.2 times higher than that in typical industrial fixed-bed steam reformers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.