Abstract

3-O-Cinnamoylepicatechin (1) was synthesized along with four flavoalkaloids, (-)-6-(5‴S)-N-ethyl-2-pyrrolidinone-3-O-cinnamoylepicatechin (2), (-)-6-(5‴R)-N-ethyl-2-pyrrolidinone-3-O-cinnamoylepicatechin (3), (-)-8-(5‴S)-N-ethyl-2-pyrrolidinone-3-O-cinnamoylepicatechin (4), and (-)-8-(5‴R)-N-ethyl-2-pyrrolidinone-3-O-cinnamoylepicatechin (5) via esterification of epicatechin followed by phenolic Mannich reaction of 1 with theanine in the presence of heat. The new compounds 1-5 were detected in leaves of three tea cultivars, Fuding-Dabai, Huangjingui, and Zimudan with the help of ultra-performance liquid chromatography hyphenated with a photodiode array detector and electrospray ionization high-resolution mass spectrometry (UPLC-PDA-ESI-HRMS), suggesting that they are naturally occurring in tea leaves. The structures of the novel natural products were characterized by one- and two-dimensional nuclear magnetic resonance (1D and 2D NMR) and mass spectroscopy. Compounds 1-5 were then evaluated for their acetylcholinesterase (AChE) inhibitory effect (IC50 = 0.12-1.02 μM). The availability of the synthesized epicatechin derivatives 1-5 via a synthetic route enabled the first unequivocal identification of these derivatives as tea secondary metabolites and made it possible to determine their content in the tea material as well as the diverse bioactivities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.