Abstract
Peroxisome proliferator-activated receptor (PPAR) δ is expressed universally in the entire tissues, particularly in those concerned with the lipid metabolism. PPAR δ stimulation alters body's energy fuel preference to fat from glucose and shows up as an emerging pharmacological target for the treatment of metabolic disorders. A new series of cinnamic acid derivatives was synthesized and evaluated for the antidiabetic and antiinflammatory activities in the animal models followed by in silico docking studies to determine the binding interactions for the best fit conformations in the binding site of the PPARδ protein. Amongst the synthesized molecules, compound 3 showed higher antidiabetic activity in oral glucose tolerance test and compound 1 showed higher antiinflammatory activity in the carrageenan induced rat paw oedema method. The in vivo study results were supported by the similar in silico molecular docking results. Most of the synthesized derivatives showed drug likeness as depicted via Lipinski's rule of 5. These molecules can serve as the early hit molecules for the discovery of safe, effective and bioavailable PPARδ agonists for the potential treatment of various metabolic disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.