Abstract
Objective(s):Recently, we showed that some new synthetic compounds structurally related to cilostamide (4-(1,2-dihydro-2-oxoquinolin-6-hydroxy)- N-cyclohexyl-N-methylbutanamide), a selective phosphodiesterase 3 (PDE3) inhibitor, produce inotropic effect comparable to that of IBMX (3-isobutyl-1-methylxanthine), a non-selective PDE inhibitor, but with differential chronotropic effect. In this investigation, we compared the pharmacological effects of these compounds as potential cardiotonic agents using the spontaneously beating atria model.Materials and Methods:In each experiment, rats were treated with reserpine. The atrium was isolated and mounted in an organ bath. We assessed chronotropic and inotropic effects using cumulative log concentration-response curves of isoprenaline alone or in combination of each test-compound.Results:Majority of test compounds augment atria contraction force (ACF) significantly but with different potencies on atrium contraction rate. Cilostamide, MCPIP ([4-(4-methyl piperazin-1-yl)-4-oxobutoxy)-4-methylquinolin-2(1H)-one]), methyl carbostyril compounds- (mc1), mc2 and mc5 increased the isoprenaline effect on ACF synergistically. But, mc6 failed to potentiate the effect of isoprenalin; mc3 and mc4 did not increase ACF, which may be because of their higher hydrophilic nature. It was interesting that mc2, alone or in combination with isoprenaline, produced the highest inotropic effect while it did not affect the basal contraction rate and almost blocked the isoprenaline chronotropic effect.Conclusion:Combination of mc2 with isoprenaline had synergistic effect on inotropic effect, but this combination reduced isoprenaline chronotropic effect; therefore, these effects cannot be related to reducing B-adrenergic receptors activity. These compounds showed different effects; probably all of them were not mediated via PDE3 inhibition and other mechanisms are involving.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.