Abstract

The synthesis of new functionalized linear diaza and triaza phenothiazine and phenoxazines and their in silico and in vitro anti-Alzheimer activity is reported. Fifteen new amide derivatives (8-11 & 13-24) were synthesized by the reactions of phenothiazines/phenoxazine (6 or 12) and various aliphatic and aromatic primary amides (7) in the presence of nickel catalyst and anhydrous potassium carbonate under nitrogen atmosphere. The FTIR, 1H NMR, 13C NMR and HR-MS spectra of the synthesized compounds were in agreement with the assigned structures. All the 15 new derivatives were screened for their in silico and in vitro anti-Alzheimer’s activity using the inhibition of acetylcholinesterase and butyrylcholinesterase. The results of the in silico experiment showed that most of the synthesized derivatives had good binding energies, binding interaction and bond distances. The most active derivatives in the in silico studies was compounds 18 (-12.5 and -11.5 kcal/mol) against acetylcholinesterase and butyrylcholinesterase, respectively. In addition, compound 18 had the best in vitro inhibitory activity against acetylcholinesterase and butyrylcholinesterase (99.37% and 82.35%). The results of in silico experiment were greatly in agreement with the results of in vitro studies. The structure-activity relationship studies revealed that the phenothiazine derivatives had better in silico and in vitro activities. Furthermore, 2-substitutted phenothiazines had better activity than the unsubstituted phenothiazines. The synthesized compounds showed promising in silico and in vitro activities against acetylcholinesterase and butyrylcholinesterase and as such could be further developed for the treatment of Alzheimer’s disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.