Abstract

Two novel chlorinated and nitrogenated azaphilones, namely N-butyl-2-aza-2-deoxychaetoviridin A (1) and N-hexyl-2-aza-2-deoxychaetoviridin A (2), along with a previously identified analogue, chaetoviridin A (3), were successfully obtained from Chaetomium globosum 2020HZ23, a marine algal-sourced endophytic fungus. The planar structures as well as the absolute configurations of these new metabolites were determined utilizing a synergistic approach that involved both spectroscopic techniques (1D/2D NMR and HRESIMS) and Density Functional Theory (DFT) calculations. Each compound was subject to in vitro cytotoxicity evaluation toward the A549 cancer cell line. Both compounds 1 and 2 demonstrated significant cytotoxicity, as evidenced by their respective IC50 values of 13.6 and 17.5 μM. Furthermore, 1 and 2 demonstrated potent cell migration inhibition, which elevated with increasing dose concentration. In contrast, compound 3 exhibited less cytotoxic activity relative to 1 and 2, suggesting that the cytotoxic potency escalates with N-substitution at the C-2 position and the introduction of a side chain. This finding could offer implications for future studies aimed at designing and refining lead compounds within this class.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call