Abstract

Context: We previously designed, developed and characterized a novel microencapsulated formulation as a platform for the targeted delivery of Probucol (PB) in an animal model of Type 2 Diabetes. Objective: The objective of this study is to optimize this platform by incorporating Chenodeoxycholic acid (CDCA), a bile acid with good permeation-enhancing properties, and examine its effect in vitro. Using sodium alginate (SA), we prepared PB-SA (control) and PB-CDCA-SA (test) microcapsules. Results and discussion: CDCA resulted in better structural and surface characteristics, uniform morphology, and stable chemical and thermal profiles, while size and rheological parameters remained unchanged. PB-CDCA-SA microcapsules showed good excipients’ compatibilities, as evidenced by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy studies. CDCA reduced microcapsule swelling at pH 7.8 at both 37 °C and 25 °C and improved PB-release. Conclusion: CDCA improved the characteristics and release properties of PB-microcapsules and may have potential in the targeted oral delivery of PB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call