Abstract

A series of chemically amplified resists based on polymers of 4-hydroxystyrene, 2-ethyl-2-adamantyl methacrylate and a monomer-bound anionic photoacid generator (PAG) were prepared and characterized. Specifically, the following PAGs were separately incorporated into the main-chain of the polymers: the isomers triphenylsulfonium salt 2-(methacryloxy)-4-trifluoromethyl benzenesulfonate and triphenylsulfonium salt 4-(methacryloxy)-2-trifluoromethyl benzenesulfonate (CF3 PAG); triphenylsulfonium salt 4-(methacryloxy)-3-nitro-benzenesulfonate (NO2 PAG); and triphenylsulfonium salt of 1,1,2-trifluorobutanesulfonate methacrylate (MTFB PAG). Triphenylsulfonium salt 4-(methacryloxy)-2,3,5,6-tetrafluorobenzenesulfonate (F4 PAG) was used as the reference PAG. The intrinsic lithography performance of these polymer-bound PAG resists showed sub-50-nm half-pitch resolution and <5 nm LER (3σ) under 100 keV electron beam patterning. The relative sensitivity of these materials under 100 keV e-beam exposure was MTFB PAG ≥ F4 PAG > CF3 PAG > NO2 PAG. Resolved pattern sizes of 40 and 32.5 nm half-pitch were obtained for fluorinated PAGs (such as MTFB PAG and F4 PAG) bound polymer resists under EUV interference lithography. The surface roughness was inspected with AFM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call