Abstract

This minireview focuses on novel degradation pathways of proteins in solution via intermediary tryptophan (Trp) radical cations, which are generated via photo-induced electron transfer to suitable acceptors such as disulfide bonds. Gas-phase mass spectrometry studies had indicated the potential for Trp radical cations to fragment via release of 3-methylene-3H-indol-1-ium from the side chain. HPLC-MS/MS analysis demonstrates that analogous fragmentation reactions occur during the exposure of peptides and proteins to light or accelerated stability testing. The light exposure of selected peptides and monoclonal antibodies leads to the conversion of Trp to glycine (Gly) or glycine hydroperoxide (GlyOOH), where GlyOOH could be reduced to hydroxyglycine, which undergoes subsequent cleavage. Product formation is consistent with Cα -Cβ fragmentation of intermediary Trp radical cations. For the peptide octreotide and specific glycoforms of IgG1 Fc domains, Trp side chain cleavage in aqueous solution is indicated by the formation of 3-methyleneindolenine (3-MEI), which adds to nucleophilic side chains, for example to Lys residues adjacent to the original Trp residues. Trp side chain cleavage leads to novel reaction products on specific peptide and protein sequences, which may have consequences for potency and immunogenicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.