Abstract

In recent years, knowledge concerning the mechanical properties of self-expandable metallic stents (SEMS) has increased. In a previous study, we defined traction force and traction momentum and reported that these characteristics are important for optimal stent deployment. However, traction force and traction momentum were represented as relative values and were not evaluated in various conditions. The purpose of the present study was to measure traction force in various situations assumed during SEMS placement. Traction force and traction momentum were measured in non-stricture, stricture, and angled stricture models using in-house equipment. Stricture and angled stricture models had significantly higher traction force and traction momentum than those of the non-stricture model (stricture vs non-stricture: traction force, 7.2N vs 1.4N, P<0.001; traction momentum, 237.8Ns vs 62.3Ns, P=0.001; angled stricture vs non-stricture: traction force, 7.4N vs 1.4N, P<0.001; traction momentum, 307.2Ns vs 62.3Ns, P<0.001). Traction force was variable during SEMS placement and was categorized into five different stages, which were similar in both the stricture and angled stricture models. We measured traction force and traction momentum under simulated clinical conditions and demonstrated that strictures and the angular positioning of the stent influenced the traction force. Clinicians should be aware of the transition of the traction force and should schedule X-ray imaging during SEMS placement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.