Abstract

The modification of polymer chain ends is important in order to produce highly functional polymers. A novel chain-end modification of polymer iodides (Polymer-I) via reversible complexation-mediated polymerization (RCMP) with different functionalized radical generation agents, such as azo compounds and organic peroxides, was developed. This reaction was comprehensively studied for three different polymers, i.e., poly (methyl methacrylate), polystyrene and poly (n-butyl acrylate) (PBA), two different functional azo compounds with aliphatic alkyl and carboxy groups, three different functional diacyl peroxides with aliphatic alkyl, aromatic, and carboxy groups, and one peroxydicarbonate with an aliphatic alkyl group. The reaction mechanism was probed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The combination of PBA-I, iodine abstraction catalyst and different functional diacyl peroxides enabled higher chain-end modification to desired moieties from the diacyl peroxide. The dominant key factors for efficiency in this chain-end modification mechanism were the combination rate constant and the amount of radicals generated per unit of time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.