Abstract

Microglia are key players in Multiple Sclerosis (MS), expressing many susceptibility genes for this disease. They constantly survey the brain microenvironment, but the precise functional relationships between microglia and pathological processes remain unknown. We performed a detailed assessment of microglial dynamics in three distinct grey matter regions in a cuprizone-induced demyelination model. We found that microglial activation preceded detectable demyelination and showed regional specificities, such as prominent phagocytic activity in cortical layer 5 and early hypertrophic morphology in hippocampal CA1. Demyelination happened earliest in cortical layer 5, although was more complete in CA1. In cortical layer 2/3, microglial activation and demyelination were less pronounced but microglia became hyper-ramified with slower process movement during remyelination, thereby maintaining local brain surveillance. Profiling of microglia using specific morphological and motility parameters revealed region-specific heterogeneity of microglial responses in the grey matter that might serve as sensitive indicators of progression in CNS demyelinating diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.