Abstract

An efficient “in situ growth” strategy was exploited to create the g-C3N4 nanosheets (NSs) and CdS nanorods (NRs) 1-D/2-D hybrid architectures, i.e. CdS NRs/g-C3N4 NSs nanocomposites, from cadmium-containing carbon nitride nanosheets (Cd/g-C3N4) compounds. The novel polymer/semiconductor hybrid material demonstrates very high photoelectrochemical response under visible light irradiation. The CdS NRs/g-C3N4 NSs electrode displays the largest photocurrent (about 100 μA/cm2), which is about 30 times compared with that of pristine g-C3N4 electrode (about 3.5 μA/cm2). The maximum incident photon-to-electron conversion efficiency (IPCE) value is up to 27 % for CdS NRs/g-C3N4 NSs electrode, which is much higher than that of pristine g-C3N4 electrode (1.2 %). The elevated photoelectrochemical performances are originated from the direct physical and electronic contact between the interfaces of the two semiconductor nanomaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.