Abstract

Due to its malignancy, the development of effective therapeutic strategies for hepatocellular carcinoma (HCC) is of urgent needs. Natural antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), not only act as direct antimicrobial agents, but also represent important regulators of the innate immune system. It has been reported that cationic AMPs may exhibit cancer-selective toxicity. We have designed a series of novel AMPs with potent antimicrobial activity against a broad spectrum of bacterial pathogens. In the current study, we evaluate the antitumor potency of these AMPs toward HCC cell lines J5, Huh7, and Hep3B. Selected AMPs inhibit the viability of HCC cells in a dose-dependent fashion, while the normal 3T3 cells were significantly less susceptible to these AMPs. GW-H1 treatment (20μM) of J5 cells for 24–72h resulted in the induction of apoptosis, as revealed by flow cytometry (increased sub-G1 populations), and western blot analysis for the appearance of activated caspase-3, -7 and -9 cleavages. Two-dimensional gel electrophoresis was applied to further analyze the AMP-responsive protein profiles of HCC, down-regulation of Hsp27, phophoglycerate kinase 1 and triosephosphate isomerase indicated that GW-H1 may induce apoptosis, and further inhibit progression and metastasis of J5 HCC cells. FITC-labeled GW-H1 was found to attach to cell membrane initially, then translocated into the cytoplasm, and eventually membranous organelles or nucleus. GW-H1 induced a marked growth suppression of J5 xenografts in nude mice in a dose dependent manner. These findings provided support for future application of GW-H1 as potential therapeutic agent for HCC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.