Abstract
The synthesis and chromatographic evaluation of a series of new Cinchona derived chiral weak anion exchangers is presented. Huisgen Cu(I) mediated alkyne–azide cycloaddition, so-called click chemistry, was used as an immobilization strategy. In this way it was possible to immobilize about 90% of offered selector via 1,2,3-triazole linker, which displays a more efficient way of binding the selector to modified silica compared to common radical mediated thiol-ene addition. Problems associated with potential radical scavenging properties of chiral selectors thereby could be circumvented. The evaluation of the synthesized chiral stationary phases regarding chromatographic behavior was carried out using polar organic mode mobile phase composition and a set of representative chiral organic acids. Different loading densities revealed an optimum selector density of about 310μmol/g chiral stationary phase with respect to resolution and selectivity. A decrease of performance was observed for higher loading, indicating mutual spatial influence of selector units leading to sterical hindrance. In addition, we observed that the effect of free azide groups on retention is negligible and the overall chromatographic behavior is comparable to other Cinchona derived chiral stationary phases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.