Abstract

PurposeThe goal of this study was to identify new candidate genes and genomic copy-number variations associated with a rare, severe, and persistent speech disorder termed childhood apraxia of speech. Childhood apraxia of speech is the speech disorder segregating with a mutation in FOXP2 in a multigenerational London pedigree widely studied for its role in the development of speech–language in humans. MethodsA total of 24 participants who were suspected to have childhood apraxia of speech were assessed using a comprehensive protocol that samples speech in challenging contexts. All participants met clinical-research criteria for childhood apraxia of speech. Array comparative genomic hybridization analyses were completed using a customized 385K Nimblegen array (Roche Nimblegen, Madison, WI) with increased coverage of genes and regions previously associated with childhood apraxia of speech. ResultsA total of 16 copy-number variations with potential consequences for speech–language development were detected in 12 or half of the 24 participants. The copy-number variations occurred on 10 chromosomes, 3 of which had two to four candidate regions. Several participants were identified with copy-number variations in two to three regions. In addition, one participant had a heterozygous FOXP2 mutation and a copy-number variation on chromosome 2, and one participant had a 16p11.2 microdeletion and copy-number variations on chromosomes 13 and 14. ConclusionFindings support the likelihood of heterogeneous genomic pathways associated with childhood apraxia of speech.Genet Med 2012:14(11):928–936

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call