Abstract

This work examines the synthesis of a novel calcium rich biochar (MB-900) and its application for phosphorus (P) and amoxicillin removal from synthetic and treated urban wastewaters under static and dynamic conditions (laboratory column and continuous stirring tank reactors (CSTRs)). Characterization techniques show that MB-900 has an enhanced structural, textural and surface chemical properties. Besides, batch adsorption tests indicate that MB-900 has important P recovery capacity in comparison with various engineered biochars available in the literature. Furthermore, under dynamic conditions, MB-900 efficiently recovers P from both synthetic solutions and real wastewater effluent. Due to a higher residence time, P recovery in CSTR mode are 94.9 and 82.3 mg g−1 for synthetic and urban wastewater, respectively. These values are 1.4, and 6.1 times higher than those obtained in column tests. Mechanism investigations shows that P recovery occurs through electrostatic interactions, complexation, and especially precipitation as hydroxyapatite. Under column and CSTR modes, AMX behaves like a conservative tracer and was not adsorbed by MB-900. Therefore, the resulting P-loaded biochar can be applied in agriculture as a slow release fertilizer without risks related to AMX adsorption/leaching by plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.