Abstract

Scaffolds for bone tissue engineering require a combination of bioactivity and bioresorption at the sample surface and high mechanical properties in the bulk. This work presents a novel calcium phosphate (CaP)/polycaprolactone (PCL) scaffold with graded composition and porosity fraction. The scaffold is made of (i) a dense hydroxyapatite (HA)/β-tricalcium phosphate (β-TCP) core, (ii) a macroporous HA/β-TCP transition layer and (iii) a macroporous PCL/(HA/β-TCP) external layer. The ceramic layers were fabricated by gel-casting whereas the outer composite layer was obtained by a solvent casting/particle leaching process. The microstructure, phase composition and biodegradation of the scaffolds were characterized. The gradient of porosity was clearly obtained whereas the gradation of phase composition was less pronounced. An in vitro dissolution test was performed by immersing the scaffolds in a TRIS solution. The results showed a dissolution phenomenon with possible differentiated mechanisms in the different layers, in relation with the targeted multi-functionality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.