Abstract

A new high-strength cement prepared from calcium phosphate and calcium aluminate has been developed and was evaluated for potential use in bone and joint repair applications. Cement specimens were aged under simulated physiological conditions. The compressive strength of the cement was determined at time intervals 1 h after setting up to 52 weeks. A compressive strength of 111.6+/-12.9 MPa was measured at 4 weeks, with the cement attaining 64% of this maximum strength within 4 h of preparation. Compressive strength greater than 90 MPa was maintained up to 52 weeks. The strength of the cement-prosthesis interface was studied using a pull-out test. Polished, 316L stainless steel rods were implanted in canine cadaver femurs to simulate a cemented hip prosthesis. At 4, 24 h, and 60 days post implantation, the force required to displace the rod was measured. Mean interfacial shear strengths of 1.17+/-0.25, 1.11+/-0.21, and 1.11+/-0.32 MPa were observed at respective time-periods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call