Abstract

A novel CaCO3/graphitic carbon nitride (g-C3N4) photocatalyst was synthesized for the first time via a facile calcination method using CaCO3 and melamine as precursors. The as-prepared samples were characterized using various techniques, such as scanning and transmission electron microscopy, X-ray diffraction, Brunauer-Emmett-Teller analysis, as well as Fourier-transform infrared, X-ray photoelectron, photoluminescence, and UV–vis diffuse reflectance spectroscopy. The results of the experiments confirm the successful coupling of CaCO3 to g-C3N4. The photocatalytic activity of the synthesized CaCO3/g-C3N4 composites was evaluated by assessing their performance in the photocatalytic degradation of crystal violet (CV) in water under visible light irradiation. The analysis shows that CaCO3/g-C3N4 exhibits higher photocatalytic activity towards CV degradation (76.0%) than pristine g-C3N4 (21.6%) and CaCO3 (23.2%). Radical trapping and electron spin resonance experiments show that hydroxyl radicals (OH) and holes (h+) are the key reactive species in the photocatalytic process. The enhanced photocatalytic activity of the composite is mainly attributed to the efficient separation rate of electron-hole pairs achieved through the incorporation of CaCO3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.