Abstract

We assessed pedicle screw accuracy utilizing a novel navigation-based spine surgery robotic system by comparing planned pathways with placed pathways in a porcine model. We placed three mini screws per vertebra for accuracy evaluation and used a reference frame for registration in four pigs (46 screws in 23 vertebrae). We planned screw paths and performed screw insertion under robot guidance. Using C-arm and CT images, we evaluated accuracy by comparing the 3D distance of the placed screw head/tip from the planned screw head/tip and 3D angular offset. Mean registration deviation between the preoperative 3D space (C-arm) and postoperative CT scans was 0.475 ± 0.119 mm. The average offset from preoperative plan to final placement was 4.8 ± 2.0 mm from the head (tail), 5.3 ± 2.3 mm from the tip and 3.9 ± 2.4 degrees of angulation. Our spine surgery robot showed good accuracy in executing an intended planned trajectory and screw path. This faster and more accurate robotic system will be applied in future studies, first in cadavers and subsequently in the clinical field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.