Abstract
Lignocellulosic biomass (LCB) is a prominent option for second-generation biofuels production. Cellulase hydrolyses cellulose, a component of LCB by attacking the β-1,4-glycosidic bonds, thus liberating mono, di, and oligosaccharides, which subsequently, can be converted to biofuel. In this study, a novel cellulase (Cel-3.1) of 1593 bp which encodes a 530 amino acid protein was identified from buffalo rumen metagenomic fosmid library, and functional expression was achieved through transformation into Escherichia coli. The molecular weight was estimated as 58 kDa on SDS-PAGE. Cel-3.1 belongs to glycosyl hydrolase family-5 (GH-5) and is predicted to have 14 α-helices and 15 β-strands. The optimal temperature and pH for Cel-3.1 were experimentally determined as 5.0 and 50 °C respectively. The synergistic effect of Ca2+ with K+ ions improved Cel-3.1 activity significantly (25%) and 1% Polyethylene Glycol (PEG-400), 1% β-mercaptoethanol enhanced the relative activity Cel-3.1 by 31.68%, 12.03% respectively. Further, the enzymatic (Cel-3.1) hydrolysis of pretreated rice straw and corncob released 13.41 ± 0.26 mg/mL and 15.04 ± 0.08 mg/mL reducing sugars respectively. High Performance Liquid Chromatography (HPLC), Scanning Electron Microscope (SEM), and Fourier Transformation Infrared spectroscopy (FTIR) analysis revealed the capability of Cel-3.1 for the breakdown and hydrolysis of both rice straw and corncob to generate various fermentable sugars.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.