Abstract
Spectrofluorometric, UV-vis spectroscopic and theoretical tools were recruited to comprehend the interaction of acalabrutinib (ACP-196; ACLB) with human serum albumin (HSA). Fluorescence intensity determinations revealed that ACLB statically quenched the HSA-native fluorescence. Analysis of the observed fluorescence data resulting from the ACLB-HSA interaction presented binding constants in the range of 6.65-7.54 × 104 M-1 with the studied temperatures. Those constants showed steady decline with the rising temperatures that further signifies static interaction of the HSA and ACLB. Binding energetics were also interpreted using the fluorescence-recorded results that exhibited a spontaneous exothermic binding reaction with a negative change in Gibbs free energy as well as negative enthalpy and positive entropy changes. Those results suggested the involvement of electrostatic forces as discovered by further computational investigation. Those docking results verified that ACLB binds to domain IIA (site I) of the HSA as demonstrated experimentally by site markers displacement binding studies. Circular dichroism studies along with the synchronous and 3D fluorescence observations showed that ACL binding does not alter the HSA conformation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.