Abstract

New broadband glass phosphors with excellent thermal stability were proposed and experimentally demonstrated for white light-emitting-diodes (WLEDs). The novel glass phosphors were realized through dispersing multiple phosphors into SiO₂ based glass (SiO₂-Na₂O-Al₂O₃-CaO) at 680°C. Y₃Al₅O₁₂:Ce³⁺ (YAG), Lu₃Al₅O₁₂:Ce³⁺ (LuAG), and CaAlSiN₃: Eu²⁺ (nitride) phosphor crystals were chosen respectively as the yellow, green, and red emitters of the glass phosphors. The effect of sintering temperature on inter-diffusion reduction between phosphor crystals and amorphous SiO₂ in nitride-doped glass phosphors was studied and evidenced by the aid of high-resolution transmission electron microscopy (HRTEM). Broadband glass phosphors with high quantum-yield of 55.6% were thus successfully realized through the implementation of low sintering temperature. Proof-of-concept devices utilizing the novel broadband phosphors were developed to generate high-quality cool-white light with trisstimulus coordinates (x, y) = (0.358, 0.288), color-rending index (CRI) = 85, and correlated color temperature (CCT) = 3923K. The novel broadband glass phosphors with excellent thermal stability are essentially beneficial to the applications for next-generation solid-state indoor lighting, especially in the area where high power and absolute reliability are required.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call