Abstract

The use of crop wild relative species to improve major crops performance is well established. Hordeum chilense has a high potential as a genetic donor to increase the carotenoid content of wheat. Crosses between the 7Hch H. chilense substitution lines in wheat and the wheat pairing homoeologous1b (ph1b) mutant allowed the development of wheat-H. chilense translocation lines for both 7Hchα and 7Hchβ chromosome arms in the wheat background. These translocation lines were characterized by in situ hybridization and using molecular markers. In addition, reverse phase chromatography (HPLC) analysis was carried out to evaluate the carotenoid content and both 7Hchα∙7AL and 7AS∙7Hchβ disomic translocation lines. The carotenoid content in 7Hchα∙7AL and 7AS∙7Hchβ disomic translocation lines was higher than the wheat-7Hch addition line and double amount of carotenoids than the wheat itself. A proteomic analysis confirmed that the presence of chromosome 7Hch introgressions in wheat scarcely altered the proteomic profile of the wheat flour. The Psy1 (Phytoene Synthase1) gene, which is the first committed step in the carotenoid biosynthetic pathway, was also cytogenetically mapped on the 7Hchα chromosome arm. These new wheat-H. chilense translocation lines can be used as a powerful tool in wheat breeding programs to enrich the diet in bioactive compounds.

Highlights

  • IntroductionHordeum chilense (2n = 2x = 14, genome HchHch) is an extremely polymorphic diploid wild barley from South of America

  • Wild species of bread wheat Triticum aestivum (2n = 6x = 42, genome AABBDD) are important resources for broadening the genetic variability of crop plants and useful traits have been transferred from these species to wheat [1]

  • Our results clearly indicate that the new translocation lines generated showed higher carotenoid content than both bread wheat and the wheat line carrying the addition of a pair of the whole chromosome 7Hch, mainly due to the higher accumulation of free lutein

Read more

Summary

Introduction

Hordeum chilense (2n = 2x = 14, genome HchHch) is an extremely polymorphic diploid wild barley from South of America. It has high crossability with other members of the Triticeae tribe and presents several agronomical characteristics which could be transferred into wheat, such as high carotenoid content among others [2,3,4,5,6]. Chromosome pairing between homoeologous (related) chromosomes can be achieved using the ph1b mutant [10]. In the absence of the Ph1 locus (pairing homoeologous locus; ph1b mutant) unspecific chromosome associations can occur between related chromosomes and can be used to induce homoeologous recombination [17]. An extensive molecular analysis of the region including the Ph1 locus has been carried out, and the Ph1 locus has been restricted to a 2.5 Mb region containing a cluster of Cdk-2 (cyclin dependent kinase-2) related genes [18], and regulates premeiotic replication, chromatin condensation, transcription of the earliest meiotic gene (Asy1), homologue pairing/synapsis, resolution of incorrect pairing at pachytene and recombination [19,20,21]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.