Abstract
Large conductance Ca2+‐activated K+ (BK) channels are critical regulators of urinary bladder smooth muscle (UBSM) function. Here, we provide a novel mechanistic insight into BK channel regulation by protein kinase C (PKC) in UBSM. Voltage‐clamp experiments showed that pharmacological activation of PKC with phorbol 12‐myristate 13‐acetate (PMA), inhibited the spontaneous transient BK currents (TBKCs) in native freshly‐isolated guinea pig UBSM cells. Current‐clamp recordings revealed that PMA significantly depolarized UBSM membrane potential, and reduced the spontaneous transient hyperpolarizations in UBSM cells. The PMA inhibitory effects on UBSM membrane potential were abolished by the selective BK channel inhibitor paxilline and were not observed with its inactive analog, 4‐alpha‐PMA. PMA did not affect the amplitude of the whole cell steady‐state BK current or single BK channel open probability (recorded in cell‐attached mode) upon inhibition of all major Ca2+ sources for BK channel activation with thapsigargin, ryanodine, and nifedipine. PMA elevated the intracellular Ca2+ levels in UBSM cells, and increased spontaneous phasic and nerve‐evoked contractions of UBSM isolated strips. The results support the concept that PKC activation leads to a reduction in BK channel activity in UBSM via a Ca2+‐dependent mechanism, thus increasing UBSM contractility.Grant Funding Source: Supported by R01 DK084284 to G. V. Petkov
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.